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Abstract. This work addresses the question of modeling the stress contours of Brazilian and

Modern European Portuguese as high order Markov chains. We discuss three criteria to select

the order of the chain: the Akaike’s Information Criterion, the Bayesian Information Criterion

and the Minimum Entropy Criterion. A statistical analysis of a sample of spontaneous speech

from both dialects indicates that the corresponding Markov chains are of different order.

1 Introduction

The human brain codes the prosodic features which are present in human speech as a sequence

of elements belonging to a finite set and evolving in time as a stochastic process which is both

stationary and ergodic. Stationary means that the process is homogeneous in time. Ergodic

means that these features do not depend on the particular sample we are considering.

The main goal of the present work is to identify the stochastic processes which are respon-

sible for the stress contours of European Portuguese (EP) and Brazilian Portuguese (BP).

This identification should be able to put in evidence what these processes have in common

and in what they differ. Also a critical review of the available methods to identify the order

of a chain is presented.

The data set under analysis is part of a corpus organized by M. B. Abaurre and co-workers

[1] at Campinas State University. This corpus is constituted of phonetic transcriptions of

sentences produced under various circumstances by speakers of the two dialects of Portuguese

under consideration. The stress contours of these sentences were codified by human means.

By stress contour we mean an ordered sequence of stressed and non stressed elements between

two phrase boundaries. We focus on the sequence of distances between consecutive stressed

elements. It seems reasonable to conjecture that the sequence of these distances between two

boundaries symbols behave as a Markov chain of high order. Eventually this order could

even be zero, which is the independent case.

Besides the estimation of the transition probabilities, we discuss three different criteria to

estimate the order of a chain, namely the Akaike’s Information Criterion (AIC), the Bayesian

Information Criterion (BIC), and the Minimum Entropy Criterion.

Strange as it may appears, there are few papers ([6], [9], [10]) dealing with the estimation

of the order of the chain. Besides the classical papers by Anderson and Goodman ([2]) and

Billingsley ([3]), most of the papers are related to probabilistic modeling of DNA sequences
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(cf. [9] and [12]). In computational linguistics, the idea of modeling the sequence of prosodic

phrases as a Markov chain is sketched in [11] but without discussing the issues addressed

here. In particular, as far as we know, there are no comparative studies between EP and BP

using Markovian models.

This paper is organized as follows. The statistical methods used are described in Section 2

and the analysis of the data is carried out in Section 3.

2 Statistical Methods

Let (Yn)n≥0 a Markov chain of order k on the finite set S = {1, 2, . . . , m}. If the chain is

stationary, it is characterized by its transition probability matrix having entries of the form

p(yk | y0, y1, . . . , yk−1) = P (Yt+k = yk | Yt = y0, Yt+1 = y1, . . . , Yt+k−1 = yk−1) t = 1, 2, . . .

(1)

where yj ∈ S, j = 0, 1, . . . , k.

In our case the sequence of distances between stressed elements that are not separated by

a boundary is to be model by a high order Markov chain. Since in the data set the maximum

distance between two stressed elements was found to be three and only very few observations

with distance four. Therefore for our discussion m was taken to be three.

In the sequence we present log–likelihood estimators of the transition probabilities and

the criteria considered for the estimation of the order of the chain.

2.1 The log–likelihood estimators

Let us assume (as in [3]) that our sample is a string of observations (a0, a1, . . . , an) of the

Markov chain (Yn)n≥0 of order k with state space S = {1, . . . , m}.
We can associate with the process (Yn) a derived chain (Y ′n) with state space S ′ =

{(z1, . . . , zk) : zj ∈ S, j = 1, . . . , k}. The chain (Y ′n) is said to be in state v ∈ S ′ at

time t if v = (yt, yt+1, . . . , yt+k−1), where yu is the state of the original chain (Yn) at time u. It

follows that the derived chain is a first-order Markov chain with transition matrix P = (pvw)

where for v = (v1, . . . , vk) and w = (w1, . . . , wk) we have,

pvw =

{
p(wk | v1, . . . , vk) if wi = vi+1, i = 1, . . . , k − 1

0 otherwise.

Thus inference can be done on the chain (Y ′n) instead of the original chain (Yn).

To estimate the transition probabilities we may write S ′ = {1, 2, . . . , s} with s = mk. For

a given realization of the process (Y ′n) up to time n, say, (a′0, a
′
1, . . . , a

′
n) let fij denote the

number of integers ` such that 0 ≤ ` ≤ n, a′` = i and a′`+1 = j, with i, j ∈ S ′. That is, fij
represents the transition counts from state i to j in the realization (a′0, a

′
1, . . . , a

′
n). Then the
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log-likelihood becomes

logL′ =
∑

D

fij log pij where D = {(i, j) : pij > 0}.

To find the maximum likelihood estimator p̂vw one need to maximize logL′ subject to the

constraint
∑
w pvw = 1. For stationary and ergodic chains this can be accomplished using the

Lagrange multipliers:

p̂ij =
fij
fi

with fi =
∑

j∈S′
fij. (2)

Moreover, it can be shown that as n→∞,

n1/2

(
fij
fi
− pij

)
−→ 0 (in probability).

Now let ξij = (fij − fipij)/f 1/2
i . Then the chi-square methods applicable to the multinomial

case can be carried over to the Markov case. And it can be shown that if the chain is stationary

and ergodic then the distribution of the s2-dimension random vector (ξij) converges as n→∞
to the normal distribution with zero mean and covariance matrix Eξijξr` = δir(δj`pij−pijpi`)
where δir is the Dirac function. It follows that for n→∞,

Un(i) =
∑

j

(fij − fi pij)2

fi pij
−→ χ2-distribution

with di − 1 degrees of freedom (di = card{j : pij > 0}). Since for i = 1, . . . , s the statistics

Un(i) are asymptotically independent we also have Un → χ2, with d− s degrees of freedom,

where

Un =
∑

i,j

(fij − fi pij)2

fi pij

and d =
∑
i di. The statistics Un is useful for testing whether the transition probabilities of

the chain have specified values poij (goodness of fit test).

The corresponding statistics for the process (Yn) then becomes

p̂(ak | a0 . . . ak−1) =
fa0...ak

fa0...ak−1

, (3)

L̂k =
∏
p̂(ak | a0, a1, . . . , ak−1)

fa0,...,ak , (4)

Un =
∑

a0...ak

(fa0...ak − fa0...ak−1
p(ak | a0 . . . ak−1))2

fa0...ak−1
p(ak | a0 . . . ak−1)

, (5)

where fa0...ak is the number of t, 1 ≤ t ≤ n − 1 such that (yt, . . . yt+k) = (a0, . . . , ak) and

fa0...ak−1
=
∑
ak fa0...ak .
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Moreover,

2 log
L̂k+1

L̂k
−→ χ2 (6)

with mk(m− 1)2 degrees of freedom.

2.2 The AIC and the BIC

We recall that the set of high order Markov chains is dense in the set of stationary stochastic

processes. Therefore, the fitness of a Markov chain model to the data can be improved by

increasing its order k. However the number of independent parameters γ = (m− 1)mk grows

exponentially on k, so that one needs to take this fact into account by penalizing a large

value of k when it is not needed. This is precisely the aim of the Akaike’s Information and

Bayesian Information Criteria (for further details see [9], [6], [10].)

For a fixed k, let the AIC(k) and BIC(k) coefficients be defined by

AIC(k) = −2 log L̂k + 2γ and (7)

BIC(k) = −2 log L̂k + γ log n . (8)

where n is the size of the observed sequence and L̂k is given by (4).

The order of the chain is taken to be the value k̂ that minimizes (7) for AIC and (8) for

BIC.

The BIC criterion was proposed by [10] and further studied by [6] as an alternative to

AIC.

The BIC amounts to maximize the asymptotic posterior distribution of the parameters

when the prior distribution is of uniform type, i.e. the set of transition probabilities is

assumed to have an independent Dirichlet distribution with all parameters unity.

An heuristic interpretation of (8) which conciliates the Bayesian and the frequentist points

of view is the following. Let us assume that the a priori distribution is a product measure of

k uniform distributions on a finite subset obtained by considering a partition of the interval

[0,1] in subintervals of length u, i.e. {[0, u), [u, 2u), . . . , [[ 1
u
]u, 1]}. Taking into account the

Central Limit Theorem, if we have a sample of length n then the precision we can expect in

the result is of order 1√
n
. So it is reasonable to take u = 1/

√
n. Therefore, we can take the a

priori distribution as

Ppriori(p1, . . . , pγ) = (
1√
n

)γ .

Using Bayes formula and taking the logarithm of the a posteriori distribution we obtain

directly the expression (8).

4



2.3 The Minimum Entropy Criterion

Let (a0, a1, . . . , an) be a sample produced by a Markov chain (Yn)n≥0 be a Markov chain of

order ` taking values in a finite set S = {1, 2, ..., m}. For a fixed k, let

ĥk = ĥk((a0, a1, . . . , an)) = −
∑

p̂(a0, a1, . . . , ak−1, ak) log p̂(ak | a0, a1, . . . , ak−1) . (9)

We remark that if k = ` then (9) is an estimate of the entropy of the chain (for more

details on the notion of entropy see [4] and [7]).

The Minimum Entropy Criterion takes the order of the chain as the minimum value of

k that minimizes hk with a desirable level of significance. This criterion is justified by the

following propositions.

Proposition 2.1 Let (Zn)n∈ZZ be a stationary process taking values in a finite set S. Let us

define h0 as −E[logP (Z0)], and for each k ≥ 1,

hk = −E[logP (Z0 | Z−k, ..., Z−1)] .

Then the sequence (hk)k is monotone and decreasing. Moreover, h`−1 > h` = hj, for some `

and for all j ≥ `, if and only if (Zn) is a Markov chain of order `.

Proof: Using the short-hand notation

P (Zk+1 = zk+1 | Z0 = z0, ..., Zk = zk) = p(zk+1 | z0, ..., zk)

and P (Z0 = z0, ..., Zk = zk) = p(z0, ..., zk), we first rewrite hk+1 as

hk+1 = −E[log P (Zk+1 | Z0, ..., Zk)]

= −
∑

z0,...,zk+1

p(z0, ..., zk+1) log p(zk+1 | z0, ..., zk)

=
∑

z1,...,zk+1

p(z1, ..., zk+1)
∑

z0

p(z0, ..., zk+1)

p(z1, ..., zk+1)
log

p(z0, ..., zk)

p(z0, ..., zk+1)
.

Using Jensen’s inequality we obtain

hk+1 ≤
∑

z1,...,zk+1

p(z1, ..., zk+1) log
∑

z0

p(z0, ..., zk)

p(z1, ..., zk+1)

= −
∑

z1,...,zk+1

p(z1, ..., zk+1) log p(zk+1 | z1, ..., zk) = hk .

Note that equality in the above expression holds if and only if

p(zk+1 | z0, ..., zk) = p(zk+1 | z1, ..., zk), ∀ (z0, ..., zk, zk+1) .

�
Proposition 2.1 implies that if (Yn)n≥0 is a Markov chain, its order ` is given by

` = min{k ≥ 0 : hk+1 = hk} .
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Proposition 2.2 If (Yn)n≥0 is a chain of order k then

−2n(ĥk+1 − ĥk) −→ χ2

with mk(m− 1)2 degrees of freedom, where ĥk is defined by (9).

Proof: The result follows immediately from (6) and the relation

−2 log
L̂k

L̂k+1

= 2n(ĥk − ĥk+1) ,

where n is the sample size. �

3 Application to prosodic data of Brazilian Portuguese

and European Portuguese

3.1 Description of the data set

In order to compare the Brazilian Portuguese and the European Portuguese, we analyzed

data sets extracted from the data bank organized by M. Bernadete Abaurre and co-workers,

at IEL-UNICAMP, part of which was presented in [1].

This data bank was prepared using transcriptions of cassette tapes of samples of sponta-

neous speech by Brazilian and European Portuguese native speakers. A sample of European

Portuguese was extracted from the data bank Português Fundamental (cf. [8]). The pho-

netic transcriptions for both dialects of Portuguese and their codification were prepared by

Abaurre and co-workers.

The data was codified with symbols B, 1, and 0, denoting the boundaries of intonational

phrases, stressed and non-stressed elements of the sentences, respectively. The statistical

analysis focused on the sequence of distances between consecutive stressed elements. Dis-

tances between stressed elements separated by a boundary B, were disconsidered, in order

to avoid a possible bias introduced by the presence of the boundaries.

For illustration we give a short example of spoken EP and the corresponding phonetic

transcription: “... e então achei que devia ter lençóis de banho ou toalhas todas azuis ou

todas amarelas. E ela: a falta de sentido prático que um homem tem. ...”.

. . . (B) e(1) en(0)tão(1) a(0)chei(1) que(1) devia(1) ter(1) len(0)çóis(1) de(0)

ba(1)nho ou(0) toa(1)lhas(0) to(1)das(0) a(0)zuis(1) ou(1) to(1)das(0) a(1)ma(0)re(1)las(0).

(B) e(0) e(1)la a(0) fal(1)ta de(0) sen(0)ti(1)do(0) práti(1)co que um(0) ho(1)mem(0)

tem(1).(B) . . .

Which give us the following transcription:
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B 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0 B 0 1 0 1 0 0 1 0 1 0 1 0 1 B

For the first stress contour: B 1 0 1 ... 1 0 B the corresponding sequence of distances

between consecutive stressed elements is

(2,2,1,1,1,2,2,2,2,3,1,1,2,2).

For the remaining string B 0 1 0 ... 0 1 B we have (2, 3, 2, 2, 2).

Since we will be testing the hypothesis that the sequences were produced by Markov

chains up to order 2, it is necessary to consider stress contours with at least four successive

stressed elements. Therefore intonational phrases with less than four stressed elements were

eliminated in our analysis. And this procedure reduced considerably the size of the original

sample.

The criteria were applied to a sample of Brazilian Portuguese of final size 76 and a sample

of European Portuguese of final size 219.

3.2 Results and discussion

Using the expression given in (3) the estimates of the transition probabilities can be computed.

For the independent case (k = 0) these estimates are displayed at Tables 1 and 2. The

corresponding estimates for k = 1 and k = 2 are shown at Tables 3 and 4, and Tables 5 and

6, respectively.

Table 1: Probability distribution for BP (k = 0).

distance 1 2 3

probability 0.132 0.658 0.211

Table 2: Probability distribution for EP (k = 0).

distance 1 2 3

probability 0.146 0.731 0.123

Table 3: Transition probabilities for BP (k = 1).



0.125 0.750 0.125

0.118 0.667 0.216

0.176 0.588 0.235




Table 4: Transition probabilities for EP (k = 1).



0.289 0.658 0.053

0.112 0.737 0.151

0.138 0.793 0.069
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For each i and j, i, j = 1, 2, 3 the entry (i, j) of the matrices above represents the transition

probability pij = p(j | i).

Table 5: Transition probabilities for BP (k = 2).

l 1 2 3

(i, j)

11 0.000 0.000 0.000

12 0.167 0.500 0.333

13 0.000 0.667 0.333

21 0.143 0.714 0.143

22 0.103 0.621 0.276

23 0.300 0.600 0.100

31 0.000 1.000 0.000

32 0.125 0.813 0.063

33 0.000 0.500 0.500

Table 6: Transition probabilities for EP (k = 2).

l 1 2 3

(i, j)

11 0.333 0.583 0.083

12 0.148 0.815 0.037

13 0.000 1.000 0.000

21 0.238 0.762 0.000

22 0.104 0.736 0.160

23 0.160 0.760 0.080

31 0.400 0.400 0.200

32 0.105 0.632 0.263

33 0.000 1.000 0.000

In the above matrices, the entry corresponding to row (i, j) and column l indicates the

transition probability p(l | i, j).
Using (7), (8), and (9) the AIC, the BIC, and the entropies differences with the respective

p-values were calculated for the BP and EP data sets and are presented on Tables 7 and

8. The last two columns of these tables contains the p-value and the degrees of freedom

(d.f.) corresponding to the χ2 test of the order of the chain, that is, we are testing the null

hypothesis that the order is k against the alternative that the order is k + 1.
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Table 7: Order estimation for BP.

Order k AIC(k) BIC(k) ĥk −2n(ĥk+1 − ĥk) p-value d.f.

k = 0 136.29 140.96 0.870 0.930 0.920 4

k = 1 143.36 157.35 0.864 10.107 0.607 12

k = 2 157.26 199.21 0.798

Table 8: Order estimation for EP.

Order k AIC(k) BIC(k) ĥk −2n(ĥk+1 − ĥk) p-value d.f.

k = 0 340.58 347.35 0.768 9.628 0.047 4

k = 1 338.95 359.28 0.746 12.667 0.394 12

k = 2 350.28 411.29 0.718

¿From Table 7 it follows that all three criteria indicate that the order of the chain is ` = 0

for BP. As for EP, Table 8 indicates that at a 5% level of significance the minimum entropy

criterion and AIC coincide in ` = 1. However the BIC indicates that the order should be

zero.

Trying to understand the above discrepancy we performed a second set of analyses on

samples of simulated data. We simulated four sequences of size 1,000 each, two for the BP

and two for EP.

The first sequence was generated by a Markov chain of order zero with distribution given

by Table 1. Table 9 shows the results for the estimation of the order for this sequence.

Table 9: Order estimation for the simulated data corresponding to Table 1 (` = 0).

Order k AIC(k) BIC(k) ĥk −2n(ĥk+1 − ĥk) p-value d.f.

k = 0 1708.44 1718.26 0.853 1.476 0.831 4

k = 1 1714.97 1744.41 0.852 19.684 0.073 12

k = 2 1720.76 1809.08 0.843

A second sequence was generated by a Markov chain of order one with transition proba-

bilities given by Table 3. Table 10 shows the results for the estimation of the order for this

sequence.

Table 10: Order estimation for the simulated data corresponding to Table 3 (` = 1).

Order k AIC(k) BIC(k) ĥk −2n(ĥk+1 − ĥk) p-value d.f.

k = 0 1730.68 1740.49 0.864 7.951 0.093 4

k = 1 1730.72 1760.17 0.860 13.112 0.361 12

k = 2 1741.61 1829.93 0.854
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Making use of Tables 2 and 4, similar sequences were generated. Tables 11 and 12 contain

the corresponding results.

Table 11: Order estimation for the simulated data corresponding to Table 2 (` = 0).

Order k AIC(k) BIC(k) ĥk −2n(ĥk+1 − ĥk) p-value d.f.

k = 0 1488.51 1498.33 0.743 2.549 0.636 4

k = 1 1493.96 1523.40 0.742 13.551 0.330 12

k = 2 1504.41 1592.73 0.735

Table 12: Order estimation for the simulated data corresponding to Table 4 (` = 1).

Order k AIC(k) BIC(k) ĥk −2n(ĥk+1 − ĥk) p-value d.f.

k = 0 1785.59 1795.40 0.892 11.003 0.027 4

k = 1 1782.59 1812.03 0.886 20.089 0.065 12

k = 2 1786.50 1874.82 0.876

Tables 9 to 12 show that the BIC criterion always indicates that the order of the chain

should be zero, even though the simulated data comes from a Markov chain of order one.

The AIC and the minimum entropy criterion however seem to be more precise indicating the

right order for the chain at a 10% level of significance. This leads us to believe that in critical

cases the AIC and the minimum entropy criterion are more reliable than the BIC.

¿From the above discussion, the AIC and the minimum entropy criterion indicate that BP

and EP correspond to Markov chains of different orders. Since the BIC did not detect this

difference, a test of goodness-of-fit was conducted assuming they were both indeed chains of

order ` = 0.

Table 13: Goodness-of-fit for EP assuming the law of BP (` = 0).

distances 1 2 3 n Un p-value

observed values (EP) 32 160 27 219

expected values 28.82 144.08 46.10 219 10.0280 0.0066

In the above table the statistics Un is defined by (5), which tests the hypothesis that

the sample from EP was produced by a sequence of independent random variables with

probability distribution given by Table 1 (BP). The p-value indicates the rejection of the

hypothesis meaning that BP and EP, if they were chain of order zero, they still have distinct

distributions.
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