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We discuss mathematical issues suggested by the processes of first-language ac-
quisiton and language change. We present a model of language acquisition with
two components: A probability measure describing sentence selection by a native
speaker, and an identification principle modeling how the child choses an element
of the finite set of natural grammars. More generally, we present an approach to
the problem of classifying existing evidence to choose among a finite set of policies
in the presence of possibly conflicting hints.

1 Introduction

The Principles-and-Parameters approach to the theory of grammar developed
by Chomsky and collaborators in the last decades claims that there is a genetic
inherited linguistic capacity which makes children able to learn a language.
This linguistic capacity is characterized by a finite set of constraints —the
Universal Grammar. The learning child identifies a grammar by assigning
structures to a sample of utterances from the parental language.

To make guesses about the structures of the sentences the child must
compare possibly competing evidence provided, in particular, by the parental
prosody?%27. This process does not always lead to the parental grammar.
The failure to do so is what is called language change.

In the present paper we discuss mathematical issues which are expected
to be relevant to these issues. Language acquisition is our main motivation
and laboratory and, in fact, the results reported here are part of a long-
term study on the subject®. Nevertheless, our approach is potentially more
general and refers to the problem of classifying existing evidence to choose
among a finite set of policies in the presence of possibly conflicting hints. Less
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compromisingly, the reader can consider our framework simply as a (non-
simple) mathematical problem, and reduce linguistics to a convenient, and
inspiring, source of questions and nomenclature.

2 A mathematical model for the interface between syntax and
prosody

Our discussion is centered on a recently introduced model of language
acquisition?%:%:14206  The model has two components: The first one, dis-
cussed in the present section, is a probability measure describing the process
of sentence selection by a native speaker. The second component, presented
in the next two sections, is an identification principle modeling how the child
choses an element of the finite set of natural grammars.

The probability measure must take into account both syntax and prosody.
The syntaz is the computational system of the grammar. This is a finite set
of constraints, of algebraic nature, which determine, in a categorical way,
which sentences are possible. For brevity we will say grammar instead of
computational system of the grammar. Prosody maps sentences into acoustic
realizations. It also imposes constraints albeit of a softer nature than gram-
mar.

We put prosody and syntax together through a Gibbsian distribution.
Each specific grammar sets the possible configurations of the system, while
prosody is described by a thermodynamical potential that favors some possible
configurations (sentences) over others.

Informally speaking, a sentence produced by a grammar is composed by
an ordered string of words together with a structural description (from now
on we use the shorthand structure). Let us call X' the finite set of words and B
the finite set of structural symbols. Sentences are ordered strings of elements
of A= XUB. A grammar is characterized by a finite set A C Z —the control
range— and a set of allowed strings G C A®. We fix A once and for all
and we identify each grammar with its corresponding set GG. The language
generated by G is the set

L(G) = {s = (Sn)nez € AZ . (Sn+m)mea € G, for any n € Z} . (1)

The prosody will be defined through a Holder continuous real function ¢
on AN which will be called the potential. In the linguistic case, it is reasonable
to assume that ¢ actually depends only on a finite set of coordinates. The
probability measure P¥C is defined as the unique measure on A% with the
property that there is a positive constant C' > 1, such that for any element ¢
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of L(G) and for any positive integer N we have

1 P a@y)
c — 6—NP+Z?;;1¢(gj(t))

<0, (2)

where P = P(p, G) is the pressure associated to the potential ¢ on L(G), o
is the usual shift on A% and

t{vz{sz(sn)nEL(G):sn:tn,for n=1---N}. (3)

The classical references on this view of Gibbsian measures is the book by
Bowen? to which we refer the reader. A more recent reference is the extensive
and up-to date review by Parry and Pollicott?8.

The simplest situation is when X = {0,1} and B = ). These are called
reqular grammars in Chomsky hierarchy. While they are knowon to be too
simple to be realistic regarding human languages, they exhibit some features
of the general phenomena. See the original articles of Chomsky!?!3 for crit-
icism and general presentation of formal languages. A regular grammar G is
therefore entirely specified by a matrix —which we denote also as G— indexed
by X and with entries equal to 0 or 1. The language generated by G is the
set

L(G):{(:bn),EXZ :G(zn,2n41) =1, forany neZ}. 4)

In dynamical systems this is called a subshift of finite type. If ¢ depends only
on the first two coordinates P¥¢ is the law of a Markov chain.

3 Language acquisition and change

We focus on the following mathematical problem. Suppose we know the po-
tential ¢ but ignore the grammar. Can we identify it if we are given a (large)
sample of the language, that is a sentence z7 produced with distribution
P#G? We interprete this question as a model of how a known prosody pro-
vides the child with hints for language acquisition. The unknown G represents
the “parental grammar”.

In this section we review results obtained by Collet, Galves and Lopes'?,
who addressed this issue in the framework of regular grammars (see also Cha-
zottes, Floriani and Limal!?® for related work in a non-linguistic context). The
following theorem gives the mazimum likelthood estimator of such grammars.
Theorem 1 For any ¢ and any regular Go € G, the mazimum likelthood
estimator of the parental grammar, given the sample 7, is the matriz G, (z7)
defined by assigning the value 1 to all the entries which appear as transitions
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in the sentence x7, and the value 0 to all the other entries. Moreover, there
exists p € (0,1) such that for any n large enough

p¥Go {mi’o CGn(ah) = Go} >1-=p". (5)

In words, an identification procedure based in the maximum likelihood
estimator is robust. The learning child always identifies the parental grammar
Gq once s/he listens to a large enough sample. We are interested, however,
in procedures that allow a certain amount of miss-identification, to model
the observed fact that from time to time a generation of children chooses a
grammar different from the parental one. A possible approach is provided
by the following minimum entropy principle. Given a string s, we define the
minimum entropy subset corresponding to a sample of size n as

El(s)={Gegsy CL(G) and h(P¥%) isminimal} (6)

where h(P¥9) is the Kolmogorov-Sinai entropy of P¥'¢ (we refer the reader
to Bowen’s book?®, for instance, for the definition of entropy). The minimum
entropy identification procedure says that the learner chooses a grammar be-
longing to £} (s).

While relative entropy appears naturally in maximal likelihood
estimations??, in the present approach it is used more as a measure of di-
versity like the Shannon index and Rényi’s a-entropy. The following two
theorems show that this procedure can be interpreted as a generalization of
the maximum-likelihood procedure allowing grammar change.

The first theorem says that both the maximum likelihood and minimum
entropy procedures agree as long as the prosody is not too biased.
Theorem 2 There exists a neighborhood O of the constant function, such
that for any ¢ wn O and any regular grammar Gg the minimum entropy sets
é'g(s) converge to Go for P9 %0 _almost-all choices of s, as n diverges.

The second theorem shows that grammar change can be driven by a biased
prosodic potential.. We endow G with the natural partial order: G < G’ if
G(z,y) < G'(z,y) for all pairs of words (z,y) and there exists at least one
pair (z,y) for which G(z,y) < G'(z,y).

Theorem 3 For any reqular G and G’ in G, such that G < G', there exists
a potential ¢ such that

lim P»%{s : G¢&ls), G e&ls)=1. (7)

n—4oo
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4 Structure recognition and language acquisition

Sentences produced by general grammars are not only ordered strings of words
but also have structure. In normal speech, however, the information regard-
ing structure is given indirectly through prosodic features such as intonation,
stress, etc. A native speaker is able to use these prosodic hints and his knowl-
edge of the grammar to parse a sentence. But a learning child that has not
yet set the parameters of the Universal Grammar is in fact forced to guess
the structures of the sentences s/he receives. This guess will influentiate the
estimation of the underlying grammar possibly leading to language change.

Formally, a mother/father offers the child a long sentence, which is an
ordered string (¢1,---,%tx). Some of the #; are words belonging to X and
some are structural symbols —that is, elements of B— representing structural
descriptions. For notational simplicity let us assume that they alternate, that
is the string is of the form

(3317317332732"":Bn—lamn)1 (8)

where z; € X and B; € B (this is no loss of generality, as we assume that
there is a possible value “(” both in X and B which indicates “absence of”
word or structural symbols at the given position).

The only explicit data the child receives is (21, -, z,). S/He must esti-
mate the hidden structure (By, - -, By_1), using his previous knowledge of ¢
and at the same time estimate the grammar. An estimation done through a
maximum likelihood procedure yields a grammar which assigns to the string

(1, -+, 2n) asequence of syntactic marks (B¥,---, BX_;) such that
2n—m
Hoen B Biyn) = 3 (0 (e0 B Biyan) (9
7j=1

is minimum. Here m is the range of the prosodic potential ¢, that is, the
number of coordinates on which it depends and o 1s the shift.

Let us illustrate this fact through an example. We take X = {1,2} and
B=1{]|,0} where “|” is interpreted as a boundary mark. Let us suppose that
the the maternal grammar is GGg defined by the assignments

Go(1,1) = Go(1,2) = Go(2,1) = Go(2, | ) = Go(|,2)=1. (10)

If the prosodic potential satisfies (1, | ) > 0, ¢(1, | ) > 0and ¢(2,2) > 0, the
maximum likelihood procedure will lead to a grammar G/ defined as follows
G, |)=G(],1)=G(2,2)=G(1,2)=G(2,1)=1. (11)

This example shows a caricature of the mechanism behind the change from

Classical to Modern European Portuguese?’.
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5 Acquisition with maturation

We present now a Maturation Model of Language Acquisition (MMLA)"8?
which is an extension of the Trigger Learning Algorithm (TLA)?%1%2 The
latter is a stochastic process that explores G in a random way, deciding at
each step whether to stay at the current grammar or to jump to a neighbor
grammar obtained by modifying the value of one randomly chosen parameter.
This decision is taken under the stimulus of a random sample of sentences
belonging to the parental language. The jump takes place if and only if
this sample can be generated by the new but not by the actual grammar.
TLA stops its search when, for the first time, none of the grammars in the
neighborhood is able to do better than the actual grammar. This happens, in
particular, each time the parental grammar is reached.

In TLA the decision depends on a boolean evaluation function that says
“go” in case of improvement. In MMLA more general evaluation functions are
allowed to accomodate prosody. Furthermore, MMLA do not forbid jumps
that do not increase the evaluation function; it only discourages them. This
discouragement increases with time, mimicking the effect of maturation during
acquisition.

Without loss of generality we consider grammars characterized by a fi-
nite number of binary parameters. Two grammars G and G’ are said to be
neighbors if they set all but one of the parameters at the same value.

Associated to each utterance z from the parental language there is an
evaluation function f; : G —]0,00[. It is natural to define them through
Boltzmann-Gibbs weights:

fo = exp[-Hy(wa(z))] (12)

Here, we is the function that associates to each utterance a complete sentence,
that i1s the string of words and its structure. In case there is no structure
available for the utterance, the function weg associates to it a special symbol
1. The exponent Hy, is a cost function defined analogously to (9). We use the
convention that

exp[—fl‘p(f)] =0. (13)

The evolution of MMLA is driven by a sequence z(7), 7 = 1,2,... of
utterances from the parental language. These utterances are chosen indepen-
dently and with the same law. Let us suppose that after 7 — 1 steps, MMLA
has reached grammar GG. To determine its value at time 7, a candidate G’
is chosen among the neighbors of G with uniform distribution. The process
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accepts it with probability
o (G) 77
7:(G,G") = (1 + == , (14)
fa(r) (G)
where (81, B2, - - -) is a sequence of positive real numbers diverging sufficiently
slowly to 4o0.
Let us call {G,,7=0,1,- -} the non homogeneous Markov chain defined
in this way. The existence of the limit

lim P{G,=G}=r(G), (15)

T—4o00

for any G € G, follows in a standard way under conditions like 3; < C' logT,
where C' > 0 is a suitable constant which depends only on the family of
evaluation functions??:23,

The interesting issue here is to find necessary and sufficient conditions
on the evaluation functions assuring that the limit distribution 7 is a Dirac
measure. In effect, 1t is reasonable to expect that if in a community all the
adults have the same grammar and prosody, then all the learning children
will also adopt a unique grammar. Nevertheless, historical examples show

that the latter may differ from the grammar spoken by the adults'C.

6 Long-range costs and the presence of phase transitions

A natural extension of the previous model would correspond to letting the
potential ¢ in (2) to depend on infintely many coordinates. In such a situation,
the resulting model could exhibit coexistence of phases (associated to a first-
order phase transition). Roughly speaking this means that the probability
distributions for finite strings have more than one infinite-string limit.

Already the very definition of the model gets more complicated in this
case. Indeed, in the presence of “long-range prosody” the whole of the (in-
finite) discourse has to be taken into account even when focusing at finite
strings. We refer the reader to Ruelle?® for the appropriate formalism.

One may wonder on the need for such generality for linguistic applications.
One may imagine, for instance, that rhythm is produced by almost periodic
stress patterns, indicating the presence of persistent long-range adjustments
in the stress contours. The main new aspect brought by infinite-range inter-
actions is the loss of uniqueness in the infinite-volume measure. Can this be
related to language change?
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Role of observables at infinity

The finite-volume distributions are not enough to determine the phase if there
is more than one. Indeed, by definition, all phases have the same finite-
volume conditional probabilities. The observations that univocally pinpoint
each phase are associated to observables at infinity, that is to functions whose
value is not altered by the change of finitely many words. In this situation,
conclusions based on observing a finite “window” can easily be missleading.
For instance, if a finite sample of the two-dimensional Ising model shows
an overwhelming fraction of up spins, it is not easy to decide whether the
sample comes from the “4” phase at zero field or from a system with a
large magnetic field. An individual deciding prematurely can incorporate an
inexisting field in the description. In practice, a large field plays the role of a
hard constraint, and the wrong choice amounts, in the previous language, to
a grammar change. We observe that such a change is not associated with the
presence of undetected structural symbols.

Possible non-Gibbsianness

In the framework of Section 4, the child is not considering the original mea-
sure, but only its projection on the part of the configurations formed only
by words. In statistical mechanics this is known as a decimated measure. It
is a well known fact that, in the presence of phase transitions a decimated
Gibbs measure may cease to be Gibbsian!?. While this type of measures
have been subjected to much study in the last decade'® 1 still the practical
consequences of non-Gibbsianness remain to be clarified. Nevertheless, let us
mention the consequences of two of the scenarios being observed. On the one
hand, some of this non-Gibbsian measures can be “forced” into a generalized
Gibbsian framework by restricting the configuration space*. This restrictions
depends on the phase whose decimation is being observed. This admits an
immediate interpretation in terms of grammar change. On the other hand,
a further decimation may bring the measure back to honest Gibbsianness,
but with a potential that, once again, depends on the phase?®. If the cou-
plings responsable for this difference are sufficiently strong, this selectivity is
tantamount to a grammar change.

Sensitivity to the choice of the prosodic potential

It is simple to see that there is considerable freedom in the choice of the func-
tions . The interaction can be “rewritten” in many different ways while
leaving the conditional probabilities unchanged. In the presence of long-
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rangeness, this freedom could make things more delicate. Several results,
chiefly the smoothness of the resulting expectations —and in particular the
presence of exotic phase transitions— crucially depend on the way interactions
are written or, more formally, on the space of interactions being considered'®.
While this may sound too abstract for the present discussion, the moral is
clear. Not all transcriptions of pratical requirements into prosodic potentials
are equally performing. The problem of finding the “optimal” choice is dif-
ficult and probably model-dependent, but sooner or later it may have to be
tackled. This remark is specially valid if long-range interactions are included.
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