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Abstract

The aim of this paper is to explain why Statistical Physics can help understanding
two related linguistic questions. The first question is how to model first language
acquisition by a child. The second question is how language change proceeds in
time.

Our approach is based on a Gibbsian model for the interface between syntax and
prosody. We also present a simulated annealing model of language acquisition, which
extends the Triggering Learning Algorithm recently introduced in the linguistic
litterature.
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1 Introduction

The aim of this paper is to explain why Statistical Physics can help under-
standing two related linguistic questions. The first question is how to model
first language acquisition by a child. The second question is how language
change proceeds in time.

We shall show that the Thermodynamical Formalism provides a suitable frame-
work, in which the notions of prosodic pattern and syntax can be put together.
They will both appear in the definition of the probability measure governing
the choice of the sample of positive evidence offered to a child during the pro-
cess of acquisition of his mother tongue. We propose to define this probability
measure as a Gibbs state in which the prosody is decribed by the potential and
the syntax is described by algebraic restricitons on the set of possible config-
urations. Roughly speaking, given a discursive context, the syntax says which
sentences are available and prosody says what is the probability to choose a
sentence among all the available ones.

With this model it is possible to formulate precisely the structure recognition
procedure which is behind language acquisition. Our model accounts for the
robustness of language acquisition even in the presence of a restricted sample of
sentences provided as positive evidence. It also accounts for language change.
Depending on the prosodic pattern, the identification procedure may lead the
learning child to chose a grammar which differs from the parental one.

This paper is organized as follows. In section 2, the linguistic theoretical frame-
work is briefly sketched. In section 3, we present a Gibbsian model for the in-
terface between syntax and prosody. In section 4, we discuss the relationship
between structure recognition and language change. As an application, we dis-
cuss a concrete case of language change, the one which leads from Classical
to Modern European Portuguese. Finally, in section 5, a simulated annealing
model of language acquisition is introduced, as an extension of the Triggering
Learning Algorithm recently introduced in the linguistic litterature.

* Expanded version of a talk presented by A.G. at StatPhys20. Work supported
by FAPESP ( Projeto Temético Rhythmic patterns, parameter setting and language
change, grant 98/3382-0)
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2 Linguistic framework

The view of language that has developed in modern linguistics is that there
is a genetic inherited linguistic capacity which makes children able to learn a
language. This linguistic capacity is characterized by a finite set of constraints,
what Chomsky calls the Universal Grammar. Any particular solution of these
constraints is called a grammar and defines in a precise way a natural language.
Moreover, each grammar can be defined in terms of a finite (and not large)
number of parameters each of which takes one of a small number of values.

As a consequence of this, first language acquisition is a process in which these
parameters are set in a particular way. To do this the learning child assigns
syntactic structures to the ordered strings of words he is exposed to as positive
evidence from the parental language. The values of the parameters are iden-
tified when a structure is assigned to each one of the strings of words present
in a sample rich enough.

To make guesses about the structures of the sentences of the sample the
child takes advantage of the hints which are provided by the parental prosody
(¢f.[20,21] ). Informally speaking, the prosody of a language is its characteristic
music, which contains, among other things, its typical stress and intonational
patterns.

It is important to emphasize that most psycholinguists agree that first lan-
guage acquisiton is an unsupervised learning process, in the sense that only
positive evidence is taken into account by the child (c.f. [19]).

Language change takes place when a generation of learning children assign
structures which are different from the ones assigned by their parents to some
of the sentences in the sample. It has been argued that some of these changes
may have been induced by a change of the prosodic patterns of the language.
Our model provides a clear picture of this effect.

The point of view we adopt here is based on the Principles and Parameters
approach to grammar which has been developed by Chomsky and collabora-
tors in the last three decades. For an up-to-date presentation of this approach
we refer the reader to [9].

The present paper is part of a research project at the interface between lin-
guistics and statistical-physics. More details about this project can be found
at the URL http://www.ime.usp.br/ tycho.



3 A Gibbsian model for the interface between syntax and prosody

The model describes the way a speaker chooses a sentence in a given discursive
context. This choice is made among all the sentences made available by his
grammar. The basic idea is that this choice is driven by euphonic consider-
ations. In other terms, the better the prosodic contour of a sentence fits the
prosodic pattern of the language, the more likely this sentence is the one to
be chosen.

A Gibbs state expresses this in a natural way. On one hand, each specific gram-
mar defines a set of possible configurations of the system. On the other hand,
prosody is described by the thermodynamical potential, which tells which con-
figurations are more likely to occur, among the possible ones.

In a realistic linguistic situation, the description of the set of all possible
configurations usually demands a detailed discussion of the values assumed
by the relevant linguistic parameters. In order to simplify our presentation,
we shall discuss here a simplified model, using what in Chomsky’s hierarchy
is called regular grammars (cf.[7,8]). This is a particular case of the model
introduced in [10], to which we refer the reader for a more general presentation
of our results, with rigorous mathematical proofs.

In this simplified model we shall suppose that the different grammars act
on the same finite set of word categories A. From now on, we shall use the
shorthand word instead of word category. The class of grammars we consider
are topologically markovian and each grammar g can be identified by a matrix
indexed by A and with entries equal to 0 or 1. The set of all the sentences of
length n generated by g is the set

This means that the grammaticality of a sentence (z1,---,x,), according to
grammar g, depends only on the allowance of each transition (z;,z;41) ex-
pressed by the fact that g(z;,z;41) = 1. We will denote by G the set of all
such grammars. It is natural to assume that the grammars in G are irreducible
and aperiodic matrices.

From now on we shall use z7 as a shorthand for (zq,---,z,).

Let us now suppose that ¢ is a real function on A™ where m is a positive
integer. For any n > m we define a Gibbs state P¥® on L,(g) in the usual
way by

_ exp[—Hy (a7)] H?:]l 9(zj,x41)

(2)




where

H,(a7) = —i oz Timr) 3)
and
Zn(p,9) = Z {exp [—H,(y7)] nf:ll 9(¥» ym)} (4)

is the partition function.

With this simple model it is possible to give a precise formulation to the ques-
tion of how prosody provides hints to language acquisition. We are interested
in the problem of identifying a grammar in G given a sentence z7 produced
by a fixed but unknown grammar. We assume that the prosody, given by the
potential ¢, has been already acquired and is, therefore, known and fixed.

A first natural trial is to treat this as the statistical problem of estimating the
grammar by a Mazimum Likelihood procedure. This amounts to looking for
the grammars g which maximize the probability P##(z"). Since in this simple
model the hamiltonian H, does not depend on g, the maximum likelihood
procedure amounts to minimizing the partition function Z, (¢, g). Needless to
say that this is a standard statistical physics question.

Let g,(zT) be the matrix defined by assigning the value 1 to all the entries
which appear as transitions in the sentence z7, and the value 0 to all the other
entries. We now have the following theorem

Theorem 1 For any ¢ and any go € G, the estimator §,(z7) is the mazimum
likelihood estimator of the parental grammar, given the sample x7. Moreover,
there exists p € (0,1) such that for any n large enough

PR {ay 2 ga(2]) = 9o} 21— p" . ()

For the proof we refer the reader to [10].

This result is quite satisfactory if all we need is a statement about the ro-
bustness of the acquisition procedure. It says that the learning child always
identifies the parental grammar g, if he has a large enough sample of positive
evidence. However, this is not what happens in real life, in which from time to
time a generation of children chooses a grammar which is different from the
parental one.



To improve the model in order to cover situations of language change we have
two possibilities. The more realistic one is to add an additional feature to the
model, namely the fact that a sentence is not only an ordered string of words,
but it has also a syntactic structure produced by the grammar. This structure
is not explicit in the sample and must be guessed by the learning child. In this
extended model the maximum likelihood procedure may lead to the choice of
a new grammar. An example of this will be presented in the next section.

The other possibility it is to use a different criterion to choose a grammar. In-
stead of minimizing the partition function Z,(¢p, g), we shall look for a gram-
mar g which minimizes the entropy of P¥*.

Let us define the entropy of the Gibbs state P## defined on L,(g) as

h(P¥5) ZP% ) log P#&(z7) . (6)

Given an ordered string of words z] we define the Minimum Entropy Subset
E,(27) by

E(a)={g€G : 27 € L,(g9) and h(P$#) is minimal } . (7)

We may now introduce the Minimum Entropy procedure. Given ¢, x7 the
learning child chooses a grammar belonging to £,(z7).

Let us define the variation var(p) as

var (o) = sup {[p(2]") — o(y")| = 2" € A",y € AT} (8)

Then the following theorem holds

Theorem 2 There exists a positive real number r, such that for any potential
¢ such that var(p) < r and any grammar g

lim Pe{al : En(2}) ={g}} =1. (9)

n—-+o0o

Theorem 2 says that the minimum entropy procedure coincides with the max-
imum likelihood procedure and identifies correctly the parental grammar,
whenever the prosody is not too biased. This accounts for the robustness
of the acquisition procedure. However, it is possible to choose the potential ¢
in such a way that the minimum entropy procedure leads to a new grammar.
It is important to emphasize that this new grammar may be strictly greater
than the maternal one. Here we are defining an order relation on G in the



usual way: g < ¢’ means that g(x,y) < ¢'(x,y) for all pair of words z and y
and there exists at least one pair (z,y) for which ¢(z,9) < ¢'(z, y).

This is the content of the next theorem.

Theorem 3 For any g and ¢g' in G, such that g < ¢', there exists a potential
© such that
lim PEE{at : g ¢ En(al),g € Ep(a)} =1. (10)

n—-+o0o

We refer the reader to [10] for the proofs of theorems 2 and 3.

A simple example may help the reader to understand what is the situation
expressed by theorem 3. Let us take A = {1,2} and

g(1,1)=9(1,2) = ¢g(2,1) =1 and ¢(2,2) =0. (11)

Let’s now take the potential ¢ acting only on pair of points (m = 2). If ¢
gives an overwhelming weight to the transition (2,2) which is not allowed by
g, then the minimum entropy procedure leads to the choice of the grammar
¢' allowing all the transitions (¢'(z,y) = 1, for all pair of words z and y).
In effect, ¢’ is able to generate any sentence generated by ¢ and moreover as
sentences generated by Pf’g' typically consist of very long sequences of 2, its
entropy is very small.

Statistical analyses based on entropy considerations go back at least to the
seminal work of Kullback [18], who showed that the notion of relative entropy
appears naturally in maximal likelihood estimation. However, in our approach,
entropy appears in a different way, close to the concept of measure of diversity
like the Shannon index and Rényi’s a-entropy (cf. [22]). A very nice related
paper in the context dynamical systems is [6].

4 Structure identification and language change

A sentence produced by a grammar is not only an ordered string of words,
it also has a structure. This structure is only indirectly indicated, through
intonation, stress and other prosodic features. A native speaker is able to
parse a sentence produced by his grammar, using these prosodic hints, as well
as his own knowledge of the grammar. But a learning child, before he sets the
parameters of Universal Grammar, must guess the structures of the sentences
he receives. In this section we shall discuss this issue, by extending the model
introduced in section 3.



In this extended model, a sentence will be an ordered string

($17B13x27B2;'"7Bn—1’xn) 3 (12)

where z1,...,x, are words belonging to A and By, ..., B, 1 are hidden syn-
tactical positions, which may either be occupied by a boundary mark | or
empty.

Let us call A the set

A=AU{]}. (13)

As before a grammar will be an element of G, the set of all matrices indexed
by A, with entries equal to 0 or 1. As in section 3, we shall assume that these
matrices are irreducible and aperiodic. To avoid ambiguities, we shall also
impose an extra constraint: for any ¢ € G and any ordered couple of words
(z,y), we have

g(z,y)g(z, | )g(],y)=0. (14)

Given a grammar g € G, a sentence of length n generated by ¢ is any ordered
string (1, By, %2, Ba, -+, Bu_1, Tn, By), such that

n—1
H Xg(xz', Bii1,2i41) =1, (15)
i=1
where
Xg(xz',Bz‘H,fUiH) = 9($j>$j+1) , if Bj+1 is empty, (16)
and
Xg(xi:Bi+1axz'+1) = g(ffja 1 )g( | ,xj+1) i Bj = | . (17)

Before introducing the prosodic potential, we must add an extra detail to the
picture. Words came from A with a stress mark. To simplify, we may assume
that this mark has only two values, say “stressed” and “unstressed”, which
will be represented by the symbols + and —, respectively. The Boltzmann-
Gibbs weight of a sentence will be a function only of the ordered string of
stress marks of the words and the boundary marks | which are present in
the sentence.



Let ¢ be a real function on {—, +}?. The hamiltonian H, will be defined as
follows

_ n—1

Hy(x1, By, @9, Bu_1,20) = Y Up(®s, Bij1, Tit1) (18)
=1

with

0 if Byt = |
Up(@i, Biy1,Tip1) = (19)
©(8i, si11) if By is empty

where s; and s;,1 are the stress marks of x; and x;,; respectively.

Now we define the Gibbs state PY® as

Pg,g(xlaBb” '7Bn—17xn) = (20)

exp[_HQO(xla Bl: e aBn:la ajn)] H?:_f Xg(mi: Bi—l—l: xi-}—l) (21)
Zn((p, g)

where Z,(yp, g) is the partition function.

A mother speaking to her child offers him a long sentence (z1, By, - - -, B, 1, Zy,).
But the only explicit data he receives is (z1,---,Z,). He must estimate the
hidden structure (By,- - -, B,_1), using his previous knowledge of ¢. The esti-
mation can be done using a Maximum Likelihood procedure. This amounts to
look for a grammar g which assigns to that specific ordered string of words a
sequence of syntactic marks (Bf, - -, BX_,) such that H,(x1, B, -, BX_;, 1y,)
is minimum.

Remember that the mother must obey the interdictions of her own grammar,
but the child is free to choose any grammar which is able to produce the string
of words his mother offered to him. This opens the possibility of language
change, even using the Maximum Likelihood procedure.

An example will help understanding this point. Let’s take A = {1,2} and let’s
assume that the stress mark of 1 is + and the stress mark of 2 is —. Let us
suppose that the the maternal grammar is g defined as follows

9(1,1)29(1,2)29(2,1)29(2, |):g(|,2):1' (22)

If (1, | ) > 0, ¢(1, | ) > 0 and ¢(2,2) > 0, the maximum likelihood



procedure will lead to the choice of the grammar ¢’ defined as follows

gl(la | ) = gl( ‘ ’1) = 91(272) = 91(17 2) = 91(2’ 1) =1. (23)

This example mimics in a very simplified way the mechanism behind the
change which leads from Classical to Modern European Portuguese. The in-
terested reader can find a detailed discussion of this in [13].

5 A simulated annealing model of language acquisition

The Trigger Learning Algorithm was recently introduced in the linguistic lit-
erature (cf.[15,11,1]). This algorithm models language acquisition by a child
as a stochastic process taking values in the set G of all natural grammars. The
algorithm explores G in a random way, deciding at each step of the procedure
either to stay at the grammar at which it arrived at the previous step or to
jump to a neighbor obtained by modifying the value of one randomly chosen
parameter. This decision is taken under the stimulus of a random sample of
sentences belonging to the parental language. The jump takes place if and only
if this sample can be generated by the new but not by the actual grammar.

It follows from this definition that the algorithm stops its search when, for the
first time, none of the grammars in the neighborhood is able to do any better
than the actual grammar. This happens in particular (but not only) any time
the parental grammar is reached.

Even if this issue is not raised in an explicit form in the linguistic literature,
the aim of the algorithm is to achieve a maximization procedure, namely to
find the grammars which maximize a given family of evaluation functions.
However, given the way the algorithm is defined, the process may get trapped
by grammars which are not global maxima of the family of fitness functions.
This is a major problem for the Trigger Learning Algorithm since the fact of
getting trapped somewhere is the only way it has to choose a grammar.

To avoid the problem of the algorithm getting trapped in grammars which
are not global maxima there are two possibilities. The first one is to allow the
algorithm to perform jumps between grammars which are not neighbors. This
hypothesis does not seem to correspond to a realistic situation.

The second solution is obtained by weakening the restriction about jumps
which do not increase the evaluation function, which will be no more forbid-
den, but only strongly depressed. In this section we show how to implement
this alternative solution, by using a suitable generalization of the simulated

10



annealing process (cf. [14] for a nice introduction to the subject, with appli-
cations).

Let us suppose that grammars are characterized by N binary parameters and
that the set G of all possible grammars can be identified with the set {0, 1}
of all ordered sequences of N elements assuming the values 0 and 1.

Two grammars g and ¢’ are said to be neighbors if they have all the pa-
rameters set at the same values with the exception of one. Given g € G and
i €{1,2,---,N}, let us denote by g’ the grammar obtained by setting all the
parameters as in g, with the exception of the parameter of index 1.

Let go be the parental grammar. Let us call L(go) the set of all the sentences
offered as evidence of gy during acquisition. It is natural to assume that there
exists a maximal length M for the sentences offered to the learning child
during acquisition. Therefore we may take

L(QO) = Un]\,/lzan(QO) ) (24)

where L, (go) denotes the set of all the sentences of length n generated by go.

Let us suppose that for each sentence n from the parental language L(go),
there exists an evaluation function f,, which associates a strictly positive real
number to each grammar g € G.

A natural class of evaluation functions is the following. For any fixed grammar
g € G, let w, be the function which associates to each ordered string of words
27 either its structure according to g, in case there is one available , or a
special symbol f, in case there is none.

A mother offers a sentence 7 = (27, w,,(z)) from L(go) to her child. However,
the only explicit data received by the learning child is the string of words z7.
Let ¢ be the potential defining the parental prosody. Since the learning child
has already acquired ¢, he can evaluate a candidate grammar g looking at the
value of H,(z7, w,(z)). Therefore, it is natural to define f, as the Boltzmann-
Gibbs weight

fo = eXp[—f_Lp(:E?, wy())] , (25)

with the convention that

exp[—H, (27, 1)] = 0. (26)

What follows does not depend on the particular way we define the class of
evaluation functions.

11



The model is defined as follows. The mother offers a sequence of sentences to
her child. Let us suppose that this choice is made at each step independently
of the former choices and with the same law p. The distribution remains fixed
during the evolution of the process. The only assumption we make about p it
is that p(n) > 0 for every n € L(go).

Let us suppose that after ¢ — 1 steps, the algorithm has reached the grammar
g- The choice of the position at time ¢ id made as follows.

A parameter index 7 € {1,---, N} is chosen at random and with uniform
distribution. At time ¢ + 1 the process updates its value to ¢* with probability

B
w0 = (1 . J{:”((j,.))) : (27)

where 7, is the sentence offered to the learning child at time ¢ and (5, B2, - - *)
is a sequence of positive real numbers diverging sufficiently slowly to +oo.

Let us call {G;,t=0,1,---} the non homogeneous Markov chain defined this
way. By construction its transition probability matrix at time ¢ is

Q:i(g —Zp (9,9 (28)

neL(go)

for any ¢g and any ¢ and

Let us call 7; be its invariant probability measure.

The existence of the limits

Jim m(g) =7(9) , (30)
and
tl}mooP {Gi=g}=7(9), (31)

for any g € G, follows in a standard way under conditions like

ﬁt S C]Ogt ’ (32)
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where C' > 0 is a suitable constant which depends only on the family of
evaluation functions (cf. [16,17]).

The interesting issue here is to find necessary and sufficient conditions on the
family { f,,,n € L(go) } assuring that the limit distribution 7 is a Dirac measure.
In effect, it is reasonable to expect that in a given community, in which all
the adults have the same grammar and prosody, all the learning children
will converge to the same and unique grammar. It is important to emphasize
that this unique grammar may be different from the grammar spoken by the
generation of the adults.

The following theorem holds

Theorem 4 A sufficient condition for the process (Gy) to converge in law to
a Dirac measure is that there exists a grammar g, a sentence n and an index
1 such that

fa(@) _ fclg)
Fle) ” elo) %

for all g # g, and all j and (.

This section is based on [2-4]. It will appear in a more general context in a
forthcoming article [5].

Acknowledgements

This article is an extended version of the talk presented at StatPhys20 by one
of the authors, A.G. We thank the audience of the talk, in particular Michael
Fisher and Joel Lebowitz, for interesting remarks and questions. We are also
indebted to Maria Bernadete Abaurre, Robert Berwick, Robert Frank, Elisa-
beti Kira, Anthony Kroch and Artur Lopes for many illuminating discussions
these last years.

References

[1] R. Berwick and P. Niyogy. Formalizing triggers: a learning model for finite
space, Linguistic Inquiry 27, 605-622, 1997.

[2] M. Cassandro and A. Galves. Acquisition et changement linguistique dans le
modele de Gibson et Wexler, Collogue Langues et Grammaire 2, Université de
Paris VII, June 8-10, 1995.

13



[3] M. Cassandro and A. Galves. Language acquisition and change in a generalized
Gibson-Wexler model, Fourth Meeting on Mathematics of the Language
(MOL/) , University of Pennsylvania, Philadelphia, October 27-28, 1995.
Tarragona, Spain, May 2-4, 1996.

[4] M. Cassandro, A. Galves and C. Galves. Structure recognition and

language change in a generalized GW model, II International Conference on
Mathematical Linguistics (ICML’96),

[5] M. Cassandro, A. Galves and C. Galves. Structure identification and language
change in a thermalized GW model. Work in progress.

[6] J.-R. Chazottes, E. Floriani and R. Lima. Relative entropy and identification
of Gibbs measures in dynamical systems J. Statist. Phys. 90, 697-725, 1998.

[7] N. Chomsky. Three models for the description of language. IRE Trans. on
Inform. Theory, IT 2, 113-124, 1953.

[8] N. Chomsky. Formal properties of grammars, in: Handbook of Math. Psych., 2,
323-418, John Wiley, New York, 1963.

[9] N. Chomsky. A minimalist program for linguistic theory The MIT Press,
Cambridge, MA, 1995.

[10] P. Collet, A. Galves and A. Lopes. Maximum likelihood and minimum entropy
identification of grammars, Random and Computational Dynamics 3, 241-250,
1995.

[11] R. Frank and S. Kapur. On the use of triggers on parameter setting, Linguistic
Ingquiry 27, 623-660, 1997.

[12] C. Galves, Clitic Placement and Parametric Changes in Portuguese, in: Aspects
of romance linguistics, Selected papers from the Linguistic Symposium on
Romance languages XXIV , Georgetown University Press, 1996.

[13] A. Galves and C. Galves. A case study of prosody driven language change.
Preprint (can be retrieved at URL http://www.ime.usp.br/ tycho).

[14] D. Geman. Random fields and inverse problem in imaging, in: 18e Ecole d’ été
de probabilités de St Flour, Lecture Notes in Mathematics, Berlin, Heidelberg,
New York: Springer, 1990.

[15] E. Gibson and K. Wexler. Triggers, Linguistic Inquiry 25, 407-454, 1994.

[16] B. Gidas. Metropolis-type Monte Carlo simulation algorithms and simulated
annealing, Brown University, 1991.

[17] B. Hajek. Cooling schedules for optimal annealing, Math. Oper. Research 13,
311-329, 1988.

[18] S. Kullback. Information theory and statistics John Wiley, New York, 1959.

[19] G. Marcus. Negative evidence in language acquisition, Cognition 46, 1993.

14



[20] J. Morgan. From Simple Input to Complex Grammar The MIT Press,
Cambridge, MA, 1986.

[21] M. Nespor, M.T. Guasti and A. Christophe. What can infants learn from
prosodic constituents? 18th GLOW Colloguium, Tromso, 1995.

[22] A. Rény. On measures of entropy and information. Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, 1, 547-561,
1961.

15



