User Guide

Dan Bikel
Contents

Preliminaries 2
1.1 Therightjava e
1.2 Settingsfiles. e 2
1.3 SCripts e e e 2
1.4 Fileformats 2
Quick Start 2
Training 3
Parsing 4
4.1 Uniprocessor or non—distributed computing environtmen 4
4.2 Distributed computing environment e 5

421 SCrPtUSAQE o . o e e

4.2.2 Experimentdirectory 6
Advanced usage 6
51 Training o e e 7
52 Parsing
5.3 Switchboard 8
54 k-bestParsing
5.5 Knesser-Ney Smoothing 8

1 Preliminaries

1.1 Theright java

In theory, the parsing engine software works with any Ja¥é44 as of v1.5.x and higher. In practice, | have
only tested it with JVM’s from IBM and Sun (I typically use Ssh To use the provided shell scripts to
train and run the parser, there is no need to set any envinsinvagiables; just make surejava executable
for an appropriate version is in your path. To determine, thisen you execute the command

java -version

you should see a long string that indicates a version of 1d6.greferably 1.6.x.

1.2 Settings files

The parser comes with several, crucial settings files, alitied in the
<parser home>/settings

directory. A given training or parsing run needs only a singgttings file, which determines, among other
things, which language the parser will work in.

N.B.: Virtually all settings that can appear in a settings file @@atained as documented constants in
thedanbikel.parser.Settings class. Please see that APl documentation for this clasafimmnation
about all possible settings.

1.3 Scripts

The distribution comes with several shell scripts, all ofiethare hard-coded to usthin/tcsh. You may
need to modify this iftcsh lives in a diferent place in your environment. As we do not yet use a true
installation scheme (such aatoconf/configure), you must make any modifications by hand. This may
change in the near future.

Most of the provided scripts spit out their usage if they amewith no arguments.

1.4 File formats

Most I/O of the parsing engine is performed by a Lisp-style S-exgioesreadeiwriter written entirely in
Java. As such, newlines are generally irrelevant, beiregdéceas just another form of whitespace. The one
exception to this is a comment, which consists of a semicatwhanything after that semicolon character
to the end of the line (just as in Lisp).

2 Quick Start

This section assumes you have already read 81 and just wget gwing parsing English.
If you want to parse English sentences using the engine f€a#lins emulation mode”, do the follow-

ing,
¢ where<dbparser home> is the install directory created by the install script, and

e where, if you have a copy of the Penn TreebatBenn Treebank home> is the root directory of the
Penn Treebank CD-ROM (or the directory to which the CD-ROMé&rarchy has been copied):

1. Train the parser on Sections 02—-21 of the WSJ Penn Treeébame of the following two ways. One
way assumes you have access to the Penn Treebank, whildtredoes not; both ways assume that
<dbparser home>/bin is in your path. The result of either way will be a “derived @l&te” called
wsj-02-21.0bj.gz.

(a) If you have access to the Penn Treebank, execute theviiotjccommands to create the file
/tmp/wsj-02-21.0bj.gz:
i. cd <Penn Treebank home>/combined/wsj
ii. cat ®[2-9]/*.mrg 1[0-9]/*.mrg 2[01]/%*.mrg > /tmp/wsj-02-21.mrg
iii. train 800 <dbparser home>/settings/collins.properties \
/tmp/wsj-02-21.mrg

(b) If you do not have access to the Penn Treebank, do theniolipto create the file
wsj-02-21.0bj.gz:
i. Download the observed events filej-02-21.observed. gz from Dan Bikel's homepage.
ii. Execute the command

train-from-observed 400 <dbparser home>/settings/collins.properties \
wsj-02-21.observed.gz

2. Copy the filewsj-02-21.0bj.gz created by Step 1 to a safe place. You will use this file in the ne
step.

3. To parse a file in the format specified in 84.1, execute thlewing command (use:dbparser
home>/bin/parse if <dbparser home>/bin is notin your path):
parse 400 <dbparser home>/settings/collins.properties wsj-02-21.obj.gz \
<input file>

3 Training

An input file for the trainer must be in the de facto standannfat of Penn Treebankmrg files, which
contain trees with part-of-speech tag preterminals andlgvas leaves. The original Penn Treebank enclosed
sentences in an extra set of parentheses; the trainer @ideethese parens, if they are present.

The easiest way to use the trainer is via the sefpirser home>/bin/train, which has the following
usage:

train <max. heap size in megabytes> <settings file> \
<parse tree input file>

Note that all training trees are expected to be in one file.

Training is, for the most part, performed in-memory. Thisamg the heap size for training needs to
be rather large; a value in the range of 500-800 is generatiyired, but this value depends greatly on the
number of sentence being fed to the trainer. (The workingssatch smaller than the maximum heap size,
however.)

However, in order to reduce the required memory, the user usaythedanbikel.parser.Trainer
class with the newit or --incremental-training options, which allow the trainer to read an observa-
tions file (output from a previous training run) in 500,008ert chunks, deriving counts after each reading
each chunk (chunk size is controlled via the setiag'ser. trainer.maxEventChunkSize). This pre-
vents the trainer from reading the entire observationsttie memory before deriving counts. Type

3

java danbikel.parser.Trainer -help

for complete usage information.

Example

To train on a filewsj-02-21.mrg containing Section 02-21 of the WSJ Penn Treebank data, ootlw
issue the command

train 800 <parser home>/settings/collins.properties \
wsj-02-21.mrg

The train script spits out the actupdva command that is doing the training.

The trainer outputs two files: anobserved.gz file, containing (a compressed stream of) human-
readable, top-level event counts that were derived rathiectty from the training trees, and arbj.gz
file, which is a series of serialized Java objects contaittiegactual, derived counts used by the parser. The
.observed.gzfile is called the “observations file” and thebj . gz file is called “derived data file”, and is
the main output file of the trainer.

4 Parsing

4.1 Uniprocessor or non—distributed computing environmenh

The easiest way to parse in a non-distributed fashion isédhe<parser home>/bin/parse script, the
usage of which is:

parse <max. heap> <settings> <derived data file> \
<input file>

The parser does not need as much memory as the trainer; ftiskEngvalue less than or equal 360 for
<max. heap> should siffice.
The input file should have one of two Lisp-style formats:

1. ((wordl (posl)) (word2 (pos2)) ... (wordN (posN)))
2. (wordl word2 ... wordN)

Format 1 is typically used, where each part of speech waspttuatuced by some (possibly automatic)
tagging program.

Format 2 is used when it is desirable to have the parser dis @hin part of speech tagging as part of the
parsing process, but all the provided settings files asshataagging will be performed as a pre-processing
step.

A part of speech that is supplied for a word is only used whahwword was never observed in training;
neverthelessvery word must have a hon-empty part of speech ligt; the format((wordl ()) (word2
0O) ... (wordN ())) isnotvalid.

Here is the first sentence of Section 00 of the WSJ Penn Triebd&wormat 1:

((Pierre (NNP)) (Vinken (NNP)) (, (,)) (61 (CD))

(years (NNS)) (old (11)) (, (,)) (will (MD)) (join (VB))
(the (DT)) (board (NN)) (as (IN)) (a (DT))

(nonexecutive (JJ)) (director (NN)) (Nov. (NNP))

(29 (D)) C. €N

4.2

Distributed computing environment

4.2.1 Scriptusage

The easiest way to parse in a distributed-computing enwient is to use the
<parser home>/bin/internal-server-runscript. The usage is:

internal-server-run <settings file> <derived data file> \
<input file>+

Note that you can specify multiple input files. In fact, if aofythe input files specified is a directory, the
engine will non-recursively get the names of all files camali the directory. For example, suppose you
have the following four files to parse:

~/data/inputFilel
~/data/inputFile2
~/data/new/newFilel

~/data/new/newFile2

The following three input file lists are all treated the sargdf® internal-server-run script (it's really
the Java clasdanbikel .parser.StartSwitchboard that is performing this magic):

~/data/inputFilel ~/data/inputFile2 ~/data/new/newFilel ~/data/new/newFile2
~/data/inputFilel ~/data/inputFile2 ~/data/new

~/data ~/data/new

While this script makes using multiple hosts easy, it maywartk out-of-the-box, requiring a few caveats:

1.

The script uses the environment variabiVA_HOME to locate the J2SDK you wish to use, so you
must make sure this variable is set in your environment. WeeJ2SDK executables that are used are
$JAVA_HOME/bin/java(by theinternal-server-runscript) and$JAVA_HOME/bin/rmiregistry
(by theno-cp-rmiregistry script, which is called by thetart-rmiregistry script, which is in
turn called by theinternal-server-run script).

. Most batch queues copy a batch script before executimghith breaks any reliance on ti§6 vari-

able. Accordingly, you may have to modify the script to haatle paths for thecriptDir variable
(near the beginning of the script). Alternatively, you cae the simple wrapper script (called, conve-
niently enoughwrapper) to avoid this problem.

. The script usessh for logging into nodes, and assumes that it will not need terem password for

doing so. The remote shell mechanism of fhecernal -server-run script, as well as that of a
dependent script callesitart-rmiregistry, may be changed by altering the definition of RE&H
variable.

. The script assumes the nodes will be provided via whitesisaparated list in BODES environment

variable, and preprends “node” to every element in thi{@gpropriate for ClubmagReowulf envi-
ronment at Penn). Please comment out the shell script cadeldles the prepending if this behavior
is not appropriate for your environment.

5. The script assumes that the unique identifier for the bjatehwvill be contained in @0BID environ-
ment variable. This job identifier is used only to guarantes diferent jobs have distinctly-named
experiment directories (see §4.2.2 for more informatioregperiment directories).

6. The script relies on other scripts in i$n directory, and expects the fitthparser. jar to be located
in its parent directory. The script finds these relativadgdted resources by using th@ variable (see
point No. 2, above).

7. When the reap variable is defined, there is a section of abtlee end of the script that logs onto all
hosts and uses tlkd 11all command to kill allrmiregistry andjava processes; this behavior may
literally be overkill for your environment, if, for examplgou have other, non-parsingva processes
that you do not wish to kill. The solution is to comment-out tme in the script readinget reap,
or to modify the reaping code to be more discriminating inghecesses that it kills.

In the future, we may customize thaternal -server-run script via an installation procedure, instead of
forcing you, the user, to perform the customizations diyect

4.2.2 Experiment directory

The script creates an experiment directory whose namgdsperiments/<date>/<time>
The experiment directory will contain the following items:

1. Log files for all the parsing clients, where each log file ttes name<host>-<uid>.log, where
<host> is the host name on which the client is running and whkered> is a unique integer, so that
two clients running on the same host will hav@&eliently-named log files.

2. A log file containing the incremental work of the distribdtcomputing run; this file has the same
name as the input file plus.d.og extension.

3. Afile called switchboard.messages, which can be monittrdérack the progress of the distributed-
computing run, via the commarnchil -f switchboard.messages

4. Finally, theinternal-server-run Script copies a specialized versionitgelf to the experiment
directory, in order to facilitate re-running the experirhear continuing an experiment that had to
be killed before all input sentences were parsed. Thisrlé&ture—being able to recover from a
previous, incomplete run—can be very useful. Cruciallg #bility to re-start an experiment from
where it left df makes use of the log file that contains incremental work i(ish No. 2, above).

5 Advanced usage

It is, of course, possible to call thmva process directly for training and parsing. The normal maddma
to specify a settings file is to provide a command-line definitof the parser.settingsFile system
property, as follows:

java -Dparser.settingsFile=collins.properties ...

To avoid specifying the settings file on the command line, gai provide a default settings file: the parsing
engine will always check to see if the fil¢’. db-parser/settings exists (where- is your home direc-
tory), and if so, use it if there is no definition of tharser. settingsFile system property. For example,
if by default you will be parsing English with the parser ia €ollins-emulation mode, you can execute the
following commands:

mkdir ~/.db-parser
cp <parser home>/settings/collins.properties ~/.db-parser/settings

5.1 Training

The Java class used for trainingdsnbikel.parser.Trainer. A typical usage is as follows (assumes
you havedbparser. jar in your class path):

java -Xms800m -Xmx800m -Dparser.settingsFile=<settings> \
danbikel.parser.Trainer -i <training file> \
-0 <observed file> -od <derived data file>

You can see its full usage by executing
java danbikel.parser.Trainer -help

If either <observed file> or <derived data file> ends with the extensiongz it is automatically
compressed before being written to disk.

A note on the<observed file>

The<observed file> is a human-readable file consisting of the top-level eventscaunts from which
all other events and counts may be derived. As such, traimiaig be performed in two steps, outputting an
<observed file> and then reading that file in to producederived data file>:

java -Xms400m -Xmx400m -Dparser.settingsFile=<settings> \
danbikel.parser.Trainer -i <training file> \
-0 <observed file>

java -Xms400m -Xmx400m -Dparser.settingsFile=<settings> \
danbikel.parser.Trainer -it -1 <observed file> \
-od <derived data file>

Note the use of theit option in the second of the two commands. This indicates tiveleounts incre-
mentally from an<observed file>, and reduces the RAM footprint considerably (all the heapssin
this section are applicable when training on the standarth Feeebank WSJ training set, Sections 02-21).

For the curious, incremental training is performed by iteedy reading top-level events and counts
from the<observed file> one “chunk” at a time, additively deriving events and couafter each such
“chunk” read. The number of top-level events read in at eachkeiment is determined via the

parser.trainer.maxEventChunkSize

setting, the default value for which {90000.

5.2 Parsing

The Java class used for parsinglimbikel .parser.Parser. A typical usage is as follows (assumes you
havedbparser. jar in your class path):

java -Xms400m -Xmx400m -Dparser.settingsFile=<settings> \
danbikel.parser.Parser -is <derived data file> \
-sa <sentence input file>

You can see its full usage by executing
java danbikel.parser.Parser -help

If <derived data file> ends with the extensorgz it is automatically decompressed as it is read from
disk.

5.3 Switchboard

The Java class used for starting the switchboard, whicleisémtral component in a distributed-computing
run, isdanbikel .parser.StartSwitchboard. You can see its full usage by executing

java danbikel.parser.StartSwitchboard -help

Developer-level documentation is available in #parser home>/doc directory. Currently, not all meth-
ods and classes are documented.

5.4 Kk-best Parsing

As of version 0.9.4, there is a hack to kltvest parsing, where basically dynamic programming isiebted
by having no two chart items be equivalent (thanks to Mikdi@®for suggesting this hack). There are three
settings one should adjust in order toldbest parsing:

e parser.chart.itemClass=danbikel.parser.CKYItem$KBestHack
e parser.decoder.kBest=k (wherek is the desired maximum number of best parses to output)

e parser.decoder.pruneFactor=<something smaller than 4> (you want to use a small beam to
avoid pursuing too many theories—remember, we have singphet! df dynamic programming)

The output of the parser is slightlyftirent wherk > 1: in this case, instead of an S-expression representing
atree, itis a list of S-expressions representing trees{afilists), in decreasing order of likelihood.

5.5 Knesser-Ney Smoothing

The type of smoothing used is determined by the typ#afel object that aProbabilityStructure
instance wraps itself in, as determined by the methogcbabilityStructure.newModel. The default
behavior is to create an instanceMafdel, which uses a variant of Witten-Bell smoothing.
However, this default behavior can be changed in a concrdtelass ofProbabilityStructure by
overriding thenewModel method, or by simply using a run-time setting,
parser.probabilityStructure.defaultModelClass

The default value for this setting tlnbikel .parser.Model, but Knesser-Ney smoothing can be used by
default by changing this setting to be

danbikel.parser.InterpolatedknesserNeyModel.

For more information on this setting, see the APl documéniafor the danbikel.parser.Settings
class.

