
User Guide

Dan Bikel

Contents

1 Preliminaries 2
1.1 The rightjava . 2
1.2 Settings files .. . 2
1.3 Scripts .2
1.4 File formats .. 2

2 Quick Start 2

3 Training 3

4 Parsing 4
4.1 Uniprocessor or non–distributed computing environment 4
4.2 Distributed computing environment 5

4.2.1 Script usage . 5
4.2.2 Experiment directory .. . 6

5 Advanced usage 6
5.1 Training .7
5.2 Parsing . 8
5.3 Switchboard .. 8
5.4 k-best Parsing . 8
5.5 Knesser-Ney Smoothing 8

1

1 Preliminaries

1.1 The right java

In theory, the parsing engine software works with any Java2 JVM as of v1.5.x and higher. In practice, I have
only tested it with JVM’s from IBM and Sun (I typically use Sun’s). To use the provided shell scripts to
train and run the parser, there is no need to set any environment variables; just make sure ajava executable
for an appropriate version is in your path. To determine this, when you execute the command

java -version

you should see a long string that indicates a version of 1.5.x, or preferably 1.6.x.

1.2 Settings files

The parser comes with several, crucial settings files, all located in the

<parser home>/settings

directory. A given training or parsing run needs only a single settings file, which determines, among other
things, which language the parser will work in.

N.B.: Virtually all settings that can appear in a settings file arecontained as documented constants in
thedanbikel.parser.Settings class. Please see that API documentation for this class for information
about all possible settings.

1.3 Scripts

The distribution comes with several shell scripts, all of which are hard-coded to use/bin/tcsh. You may
need to modify this iftcsh lives in a different place in your environment. As we do not yet use a true
installation scheme (such asautoconf/configure), you must make any modifications by hand. This may
change in the near future.

Most of the provided scripts spit out their usage if they are run with no arguments.

1.4 File formats

Most I/O of the parsing engine is performed by a Lisp-style S-expression reader/writer written entirely in
Java. As such, newlines are generally irrelevant, being treated as just another form of whitespace. The one
exception to this is a comment, which consists of a semicolonand anything after that semicolon character
to the end of the line (just as in Lisp).

2 Quick Start

This section assumes you have already read §1 and just want toget going parsing English.
If you want to parse English sentences using the engine in its“Collins emulation mode”, do the follow-

ing,

• where<dbparser home> is the install directory created by the install script, and

• where, if you have a copy of the Penn Treebank,<Penn Treebank home> is the root directory of the
Penn Treebank CD-ROM (or the directory to which the CD-ROM’shierarchy has been copied):

2

1. Train the parser on Sections 02–21 of the WSJ Penn Treebankin one of the following two ways. One
way assumes you have access to the Penn Treebank, while the other does not; both ways assume that
<dbparser home>/bin is in your path. The result of either way will be a “derived data file” called
wsj-02-21.obj.gz.

(a) If you have access to the Penn Treebank, execute the following commands to create the file
/tmp/wsj-02-21.obj.gz:

i. cd <Penn Treebank home>/combined/wsj

ii. cat 0[2-9]/*.mrg 1[0-9]/*.mrg 2[01]/*.mrg > /tmp/wsj-02-21.mrg

iii. train 800 <dbparser home>/settings/collins.properties \
/tmp/wsj-02-21.mrg

(b) If you do not have access to the Penn Treebank, do the following to create the file
wsj-02-21.obj.gz:

i. Download the observed events filewsj-02-21.observed.gz from Dan Bikel’s homepage.

ii. Execute the command
train-from-observed 400 <dbparser home>/settings/collins.properties \

wsj-02-21.observed.gz

2. Copy the filewsj-02-21.obj.gz created by Step 1 to a safe place. You will use this file in the next
step.

3. To parse a file in the format specified in §4.1, execute the following command (use<dbparser
home>/bin/parse if <dbparser home>/bin is not in your path):
parse 400 <dbparser home>/settings/collins.properties wsj-02-21.obj.gz \

<input file>

3 Training

An input file for the trainer must be in the de facto standard format of Penn Treebank.mrg files, which
contain trees with part-of-speech tag preterminals and words as leaves. The original Penn Treebank enclosed
sentences in an extra set of parentheses; the trainer disregards these parens, if they are present.

The easiest way to use the trainer is via the script<parser home>/bin/train, which has the following
usage:

train <max. heap size in megabytes> <settings file> \

<parse tree input file>

Note that all training trees are expected to be in one file.
Training is, for the most part, performed in-memory. This means the heap size for training needs to

be rather large; a value in the range of 500-800 is generally required, but this value depends greatly on the
number of sentence being fed to the trainer. (The working setis much smaller than the maximum heap size,
however.)

However, in order to reduce the required memory, the user mayuse thedanbikel.parser.Trainer
class with the new-it or --incremental-training options, which allow the trainer to read an observa-
tions file (output from a previous training run) in 500,000-event chunks, deriving counts after each reading
each chunk (chunk size is controlled via the settingparser.trainer.maxEventChunkSize). This pre-
vents the trainer from reading the entire observations file into memory before deriving counts. Type

3

java danbikel.parser.Trainer -help

for complete usage information.

Example

To train on a filewsj-02-21.mrg containing Section 02–21 of the WSJ Penn Treebank data, one would
issue the command

train 800 <parser home>/settings/collins.properties \

wsj-02-21.mrg

The train script spits out the actualjava command that is doing the training.
The trainer outputs two files: an.observed.gz file, containing (a compressed stream of) human-

readable, top-level event counts that were derived rather directly from the training trees, and an.obj.gz
file, which is a series of serialized Java objects containingthe actual, derived counts used by the parser. The
.observed.gz file is called the “observations file” and the.obj.gz file is called “derived data file”, and is
the main output file of the trainer.

4 Parsing

4.1 Uniprocessor or non–distributed computing environment

The easiest way to parse in a non-distributed fashion is to use the<parser home>/bin/parse script, the
usage of which is:

parse <max. heap> <settings> <derived data file> \

<input file>

The parser does not need as much memory as the trainer; for English, a value less than or equal to500 for
<max. heap> should suffice.

The input file should have one of two Lisp-style formats:

1. ((word1 (pos1)) (word2 (pos2)) ... (wordN (posN)))

2. (word1 word2 ... wordN)

Format 1 is typically used, where each part of speech was thatproduced by some (possibly automatic)
tagging program.

Format 2 is used when it is desirable to have the parser do all its own part of speech tagging as part of the
parsing process, but all the provided settings files assume that tagging will be performed as a pre-processing
step.

A part of speech that is supplied for a word is only used when that word was never observed in training;
nevertheless,every word must have a non-empty part of speech list;i.e., the format((word1 ()) (word2
()) ... (wordN ())) is not valid.

Here is the first sentence of Section 00 of the WSJ Penn Treebank in Format 1:

((Pierre (NNP)) (Vinken (NNP)) (, (,)) (61 (CD))

(years (NNS)) (old (JJ)) (, (,)) (will (MD)) (join (VB))

(the (DT)) (board (NN)) (as (IN)) (a (DT))

(nonexecutive (JJ)) (director (NN)) (Nov. (NNP))

(29 (CD)) (. (.)))

4

4.2 Distributed computing environment

4.2.1 Script usage

The easiest way to parse in a distributed-computing environment is to use the
<parser home>/bin/internal-server-run script. The usage is:

internal-server-run <settings file> <derived data file> \

<input file>+

Note that you can specify multiple input files. In fact, if anyof the input files specified is a directory, the
engine will non-recursively get the names of all files contained the directory. For example, suppose you
have the following four files to parse:

• ~/data/inputFile1

• ~/data/inputFile2

• ~/data/new/newFile1

• ~/data/new/newFile2

The following three input file lists are all treated the same by theinternal-server-run script (it’s really
the Java classdanbikel.parser.StartSwitchboard that is performing this magic):

• ~/data/inputFile1 ~/data/inputFile2 ~/data/new/newFile1 ~/data/new/newFile2

• ~/data/inputFile1 ~/data/inputFile2 ~/data/new

• ~/data ~/data/new

While this script makes using multiple hosts easy, it may notwork out-of-the-box, requiring a few caveats:

1. The script uses the environment variableJAVA_HOME to locate the J2SDK you wish to use, so you
must make sure this variable is set in your environment. The two J2SDK executables that are used are
$JAVA_HOME/bin/java (by theinternal-server-runscript) and$JAVA_HOME/bin/rmiregistry
(by theno-cp-rmiregistry script, which is called by thestart-rmiregistry script, which is in
turn called by theinternal-server-run script).

2. Most batch queues copy a batch script before executing it,which breaks any reliance on the$0 vari-
able. Accordingly, you may have to modify the script to hard-code paths for thescriptDir variable
(near the beginning of the script). Alternatively, you can use the simple wrapper script (called, conve-
niently enough,wrapper) to avoid this problem.

3. The script usesssh for logging into nodes, and assumes that it will not need to enter a password for
doing so. The remote shell mechanism of theinternal-server-run script, as well as that of a
dependent script calledstart-rmiregistry, may be changed by altering the definition of theRSH
variable.

4. The script assumes the nodes will be provided via whitespace-separated list in aNODES environment
variable, and preprends “node” to every element in this list(appropriate for Clubmask/Beowulf envi-
ronment at Penn). Please comment out the shell script code that does the prepending if this behavior
is not appropriate for your environment.

5

5. The script assumes that the unique identifier for the batchjob will be contained in aJOBID environ-
ment variable. This job identifier is used only to guarantee that different jobs have distinctly-named
experiment directories (see §4.2.2 for more information onexperiment directories).

6. The script relies on other scripts in itsbin directory, and expects the filedbparser.jar to be located
in its parent directory. The script finds these relatively-located resources by using the$0 variable (see
point No. 2, above).

7. When the reap variable is defined, there is a section of codeat the end of the script that logs onto all
hosts and uses thekillall command to kill allrmiregistry andjava processes; this behavior may
literally be overkill for your environment, if, for example, you have other, non-parsingjava processes
that you do not wish to kill. The solution is to comment-out the line in the script readingset reap,
or to modify the reaping code to be more discriminating in theprocesses that it kills.

In the future, we may customize theinternal-server-run script via an installation procedure, instead of
forcing you, the user, to perform the customizations directly.

4.2.2 Experiment directory

The script creates an experiment directory whose name is~/experiments/<date>/<time>

The experiment directory will contain the following items:

1. Log files for all the parsing clients, where each log file hasthe name<host>-<uid>.log, where
<host> is the host name on which the client is running and where<uid> is a unique integer, so that
two clients running on the same host will have differently-named log files.

2. A log file containing the incremental work of the distributed-computing run; this file has the same
name as the input file plus a.log extension.

3. A file called switchboard.messages, which can be monitored to track the progress of the distributed-
computing run, via the commandtail -f switchboard.messages

4. Finally, theinternal-server-run script copies a specialized version ofitself to the experiment
directory, in order to facilitate re-running the experiment, or continuing an experiment that had to
be killed before all input sentences were parsed. This latter feature—being able to recover from a
previous, incomplete run—can be very useful. Crucially, the ability to re-start an experiment from
where it left off makes use of the log file that contains incremental work (listitem No. 2, above).

5 Advanced usage

It is, of course, possible to call thejava process directly for training and parsing. The normal mechanism
to specify a settings file is to provide a command-line definition of theparser.settingsFile system
property, as follows:

java -Dparser.settingsFile=collins.properties ...

To avoid specifying the settings file on the command line, youcan provide a default settings file: the parsing
engine will always check to see if the file~/.db-parser/settings exists (where~ is your home direc-
tory), and if so, use it if there is no definition of theparser.settingsFile system property. For example,
if by default you will be parsing English with the parser in its Collins-emulation mode, you can execute the
following commands:

6

mkdir ~/.db-parser

cp <parser home>/settings/collins.properties ~/.db-parser/settings

5.1 Training

The Java class used for training isdanbikel.parser.Trainer. A typical usage is as follows (assumes
you havedbparser.jar in your class path):

java -Xms800m -Xmx800m -Dparser.settingsFile=<settings> \

danbikel.parser.Trainer -i <training file> \

-o <observed file> -od <derived data file>

You can see its full usage by executing

java danbikel.parser.Trainer -help

If either <observed file> or <derived data file> ends with the extension.gz it is automatically
compressed before being written to disk.

A note on the<observed file>

The<observed file> is a human-readable file consisting of the top-level events and counts from which
all other events and counts may be derived. As such, trainingmay be performed in two steps, outputting an
<observed file> and then reading that file in to produce a<derived data file>:

java -Xms400m -Xmx400m -Dparser.settingsFile=<settings> \

danbikel.parser.Trainer -i <training file> \

-o <observed file>

java -Xms400m -Xmx400m -Dparser.settingsFile=<settings> \

danbikel.parser.Trainer -it -l <observed file> \

-od <derived data file>

Note the use of the-it option in the second of the two commands. This indicates to derive counts incre-
mentally from an<observed file>, and reduces the RAM footprint considerably (all the heap sizes in
this section are applicable when training on the standard Penn Treebank WSJ training set, Sections 02–21).

For the curious, incremental training is performed by iteratively reading top-level events and counts
from the<observed file> one “chunk” at a time, additively deriving events and countsafter each such
“chunk” read. The number of top-level events read in at each increment is determined via the

parser.trainer.maxEventChunkSize

setting, the default value for which is500000.

7

5.2 Parsing

The Java class used for parsing isdanbikel.parser.Parser. A typical usage is as follows (assumes you
havedbparser.jar in your class path):

java -Xms400m -Xmx400m -Dparser.settingsFile=<settings> \

danbikel.parser.Parser -is <derived data file> \

-sa <sentence input file>

You can see its full usage by executing

java danbikel.parser.Parser -help

If <derived data file> ends with the extenson.gz it is automatically decompressed as it is read from
disk.

5.3 Switchboard

The Java class used for starting the switchboard, which is the central component in a distributed-computing
run, isdanbikel.parser.StartSwitchboard. You can see its full usage by executing

java danbikel.parser.StartSwitchboard -help

Developer-level documentation is available in the<parser home>/doc directory. Currently, not all meth-
ods and classes are documented.

5.4 k-best Parsing

As of version 0.9.4, there is a hack to dok-best parsing, where basically dynamic programming is eliminated
by having no two chart items be equivalent (thanks to Mike Collins for suggesting this hack). There are three
settings one should adjust in order to dok-best parsing:

• parser.chart.itemClass=danbikel.parser.CKYItem$KBestHack

• parser.decoder.kBest=k (wherek is the desired maximum number of best parses to output)

• parser.decoder.pruneFactor=<something smaller than 4> (you want to use a small beam to
avoid pursuing too many theories—remember, we have simply turned off dynamic programming)

The output of the parser is slightly different whenk > 1: in this case, instead of an S-expression representing
a tree, it is a list of S-expressions representing trees (a list of lists), in decreasing order of likelihood.

5.5 Knesser-Ney Smoothing

The type of smoothing used is determined by the type ofModel object that aProbabilityStructure
instance wraps itself in, as determined by the methodProbabilityStructure.newModel. The default
behavior is to create an instance ofModel, which uses a variant of Witten-Bell smoothing.

However, this default behavior can be changed in a concrete subclass ofProbabilityStructure by
overriding thenewModelmethod, or by simply using a run-time setting,
parser.probabilityStructure.defaultModelClass.

8

The default value for this setting isdanbikel.parser.Model, but Knesser-Ney smoothing can be used by
default by changing this setting to be
danbikel.parser.InterpolatedKnesserNeyModel.

For more information on this setting, see the API documentation for thedanbikel.parser.Settings
class.

9

